
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Simulated Raindrop Algorithm for Global

Optimization

 Amin Ibrahim, IEEE Member

Department of Electrical, Computer, and Software

Engineering

University of Ontario Institute of Technology

Oshawa, Canada

amin.ibrahim@uoit.ca

Shahryar Rahnamayan, SMIEEE

Department of Electrical, Computer, and Software

Engineering

University of Ontario Institute of Technology

Oshawa, Canada

shahryar.rahnamayan@uoit.ca

Miguel Vargas Martin, IEEE Member

Faculty of Business and IT

University of Ontario Institute of Technology

Oshawa, Canada

miguel.vargasmartin@uoit.ca

Abstract— In this paper, we propose a novel single-solution

based metaheuristic algorithm called Simulated Raindrop

(SRD). The SRD algorithm is inspired by the principles of

raindrops. When rain falls on the land, it normally flows from

higher altitude to a lower due to gravity, while choosing the

optimum path towards the lowest point on the landscape. We

compared the performance of simulated annealing (SA)

against the proposed SRD method on 8 commonly utilized

benchmark functions. Experimental results confirm that SRD

outperforms SA on all test problems in terms of variant

performance measures, such as convergence speed, accuracy of

the solution, and robustness.

Keywords—Nature-inspired algorithms; S-metaheuristic;

raindrop; global optimization; simulated annealing.

I. INTRODUCTION

Nowadays, real-world applications are increasingly
complex and more encompassing, in the sense that more
decision variables are used to model complex situations and
more input data and parameters are available to capture the
complexity of the problems themselves. As a result, most
real-world optimization problems cannot be solved using
polynomial-time algorithms (i.e., they are NP-hard
problems). Since finding exact or approximate solutions in
NP-complete and NP-hard problems still poses a real
challenge despite the impact of recent advances in computer
technology, there are numerous approximation methods
capable of finding “good” solutions in a “reasonable” time.
Due to the inherent complexities and dynamics we have in
nature, and its ability to approach its own problems, nature is
the main source of inspiration for solving our complex
problems [1].

Most nature-inspired algorithms are population based, in
which multiple agents interact to solve or accomplish a given
task. Though arguably nature-inspired algorithms are still at
their early stages, many have shown a great potential in

solving very complicated problems with diverse applications
in engineering, business, economics, and communication
networks. For example, evolutionary algorithms (EAs) are
nature-inspired population-based methods taken from the
biological evolution of living organisms to adapt to their
ecosystem. The main genetic-based operations of EAs are
selection (the fittest organisms replace the weakest for the
next generation) [2], mutation (a subset of genes is chosen
randomly and the allele value of the chosen genes is
changed), and crossover (replacing some of the genes in one
parent by corresponding genes of the other). There has been
numerous biological evolution inspired algorithms since the
early 1990s and among all EAs, genetic algorithms (GAs)
are especially popular [3].

GA is the first evolutionary-based stochastic optimization
algorithm in which organisms evolve by rearranging genetic
material to survive in hostile environments challenging them.
GA was proposed by Holland [4] and it has shown
outstanding achievements in solving many economics,
engineering and science real-world applications. Differential
Evolution (DE) is also one of the most successful
evolutionary algorithms; developed by Rainer Storn and
Kenneth Price [5], it has solved numerous global
optimization problems effectively. The main components of
DE and GA are similar except that in DE mutation is the
result of arithmetic combinations of individuals whereas in
GA mutation is the result of small perturbations to the genes
of an individual.

Another nature-inspired population-based algorithm is
swarm intelligence. It is inspired from the social behaviour
of species such as ants, bees, wasps, termite, fish, and birds
which cooperate or compete for food. Among the most
successful swarm-based optimization algorithms are particle
swarm optimization (PSO) and ant colony optimization
(ACO). PSO was introduced by Kennedy and Eberhart [6] in
1995. PSO simulate the behaviour of a flock of birds. In

CCECE 2014 1569888639

1

978-1-4799-3010-9/14/$31.00 ©2014 IEEE CCECE 2014 Toronto, Canada

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

PSO, each solution is a “particle” and each particle has two
values: fitness value which is calculated by fitness function,
and velocity which indicates the direction of particles. ACO
was proposed by Dorigo [7] as his PhD thesis. ACO mimics
the collective behavior of ants to perform complex tasks such
as transportation of food and finding food sources. It was
observed that ants communicate using a chemical trail called
pheromone that is left on the ground during their journey to
and from food sources and their nest. Remarkably an ant
colony is able to find the shortest path between two points
using the smelt quantity of pheromone.

 The organization of the paper is as follows: Section II

discusses related work, mainly an intelligent water drop

algorithm. Section III provides the technical description of

the proposed algorithm, called simulated raindrop (SRD).

Section IV briefly discusses simulated annealing (SA) and

defines the benchmark continuous optimization functions

utilized in our experiments. Section V provides the

experimental settings and corresponding results. Finally,

Section VI concludes with a summary and future work.

II. RELATED WORK

In 2007, Shah-Hosseini [8] proposed a population-

based heuristic algorithm - called intelligent water drops

algorithm (IWD) - for solving the traveling salesman

problem. IWD algorithm tries to simulate the processes that

occur in the natural river systems and the interaction among

water drops in a river. He observed that a river often

chooses an optimum path regarding the conditions of its

surroundings before it reaches a lake or sea. He and others

later adopted the IWD algorithm to successfully solve a

number of known optimization problems, such as:

Multidimensional Knapsack Problem (MKP) [9], n-queen

puzzle [10], and Robot Path Planning [10], and automatic

multilevel thresholding [12].

In 2012, Shah-Hosseini [13] also proposed an IWD for

continuous optimization (IWD-CO) where he combined

IWD with a mutation-based local search (IWD-CO) to find

the optimal values of numerical functions. Although he

showed that the IWD algorithm can be modified to handle

continuous optimization, his work needs further

experimental verification with regard convergence speed

and solution accuracy.

While the inspirations for IWD and SRD are similar,

they have very different approach in representing/solving

optimization problems. First of all, IWD is a population-

based heuristic (problem-specific) algorithm whereas SRD

is a single-solution based metaheuristic. Second, the

mechanics of IWD is different form SRD: IWD updates its

current location to the next location/path based on the

amount of soil on its beds and updates the velocity by the

amount nonlinearly proportional to the inverse of the soil

between the two locations. On the other hand SRD updates

its current to the next solution based on the splash generated

by the rain drop as it hits the ground. In SRD, the use of

splashes is discussed in the next section.

III. PROPOSED SRD ALGORITHM

The SRD algorithm is a single-solution based

metaheuristics (S-metaheuristics) inspired by the principles

of raindrops. When rain hits ground, it tends to keep moving

towards the lowest point on the landscape due to gravity.

Similar to all S-metaheuristics, SRD starts with a single

candidate solution and tries to improve it by selecting

promising candidate solutions from a set of generated

candidates. The analogy between the physical rainfall and

SRD are as follows: the terrain represents the objective

function; the flow of water from higher altitude to lower

altitude is similar to local search on raindrop splashes, and

the lowest point on the landscape is the optimal solution.

A. Intialization

Similar to all stochastic heuristics or metaheuristic

algorithms, SRD starts by generating an initial candidate

solution. This initialization (raindrop) is selected uniform

randomly as follows:

Let �	 = {��, ��, ��, … , �
} represent an initial candidate

solution, then �� =
���(����	, ����) (1)

�� = �
�� + � (2)

�� = 	
���(��� 	, ��!")																									(3)		
#� = $ ���� ,																		%&	�� + �� < �������� ,																		%&	�� + �� > �����) + �� ,													*+ℎ-
.%#-																,			(4)	

where % = {1,2, … , 1}, 1 is the problem dimension, ����	
and ����	 are the variable boundaries, �� number of

splashes, � is the splash displacement, # is the splash

location and � and � are control parameters. The main goal

of Eq. 2 is to establish the minimum number of splashes

generated by a given problem to � at the increment of one

for every � dimension. In this paper, � = 3	and � = 10	are

selected to be the optimal control parameter values after

running some trail experiments. Since this work is in its

initial stages, we need to conduct control parameter analysis

as we move forward with this research.

B. Splash Generation

In every iteration, SRD generates �� splashes for the

raindrop. The main purpose of the splashes is to “sense” the

neighboring landscape so that they guide the raindrop to the

next best location. Splashes are generated b according to the

following rules.

1) Splash displacment: SRD has a constant splash size

(interms of its radius) where the size of splashes are not

consistently increasing or decreasing. However the

dispalcement of every splash varies. The splash

displacement has an essential role in the efficiency of the

algorithm. The splash dispacement is defined as follows:

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

�� = 4
���(����, ����),																						%�5*6�+ ≤ 0					
��� 8 �9:;��<=>�? , �9@A��<=>�?B ,										*+ℎ-
.%#-										(5)

where ����	 and ����	 are the variable boundaries, and %�5*6�+ is the difference of non-improving moves and

improving moves so far and it is defined as:

%�5*6�+ = $%�5*6�+ + 1, %&	∃#�: &(#�) < &(�),																																							% ∈ (1, ��)						%�5*6�+ − 1, *+ℎ-
.%#-																 (6)

At the earlier stages (iteration) of the algorithm the

displacement is large; thus this will encourage the

diversification in the search space during the exploration

phase. As the raindrop approaches the optimal solution

during exploitation, the displacement of the splashes

decrease and this will intensify the search in the optimal

region of the search space. Steps 9, 11–12 and 21–22 from

Table 1 indicate the implementation of splash sizing

strategy.

2) Splash replacement strategy: Splashes are generated

and replaced according to the folowing rules.

a) Scenario 1 (solution is improved in the previous

iteration): If the solution is improved in the previous step

(i.e.,	∃#�: &(#�) < &(�)) then at the next iteration the

raindrop moves to the location of best improved splash in

the search space. Moreover, the number of splashes are

reduced by half, and the displacement of one of the splash

will be the same as the displacement of the best improved

splash in the previous step (see Fig. 1(a)). This is from our

observation that water streams tend to move in the same

direction unless the landscape changes. Thus, it is not

necessary to generate as many splashes as the original

number of splashes. As such this feature will result in the

reduction of the function calls. However, since the best

improving path (displacement) is not guaranteed to be the

optimal path, we still generate random splashes to “sense”

the landscape in search of a better candidate solution. Steps

6–16 from Table 1 implement the Scenario 1 splash

replacement strategy.

TABLE I. PSEUDOCODE FOR SIMULATED RAINDROP (SRD). GH: INITIAL CANDIDATE SOLUTION, IJ: MAXIMUM NUMBER OF SPLASHES,	K: PROBLEM DIMENSION, IL: NUMBER OF SPLASHES IN THE CURRENT ITERATION, LM: DISPLACEMENT OF THE MTH SPLASH, LNOJP: THE BEST IMPROVED DISPLACEMENT, GQMR: LOWER

VARIABLE BOUND,	GQSG: UPPER VARIABLE BOUND,	MQTUVRP: THE DIFFERENCE OF IMPROVING AND NON-IMPROVING MOVES, AND W(∙):OBJECTIVE FUNCTION.

Simulated Raindrop Algorithm (SRD)

1. �	 = 	 �Y ; /∗ Generation of the initial candidate solution/raindrop ∗/
2. �� = �
�� + �; /∗Number of splashes ∗/	
3. [�*�-� =	False; /∗ Initialize move info∗/

4. %�5*6�+	 = 	0 /∗ Initialize improving move count to zero ∗/

5. Repeat

6. If %�*�-� Then

7. %�5*6�+ − −;

8. �] = 	
���(1, �� 2⁄) /∗ Generate at most ��/2 splashes ∗/

9. #� = � +	�`a�?
10. For %	 = 	2 to �]

11. If %�5*6�+ ≤ 0 Then �� = 	
���(����, ����)
12. Else �� = 	
���(����/%�5*6�+, ����/%�5*6�+)
13. End If

14. #� = � +	��
15. End For

16. [�\
*�-� = False

17. Else

18. %�5*6�+ + +;

19. �] 	 = 	
���(1,��)
20. For %	 = 	2 to �]

21. If %�5*6�+ ≤ 0 Then �� = 	
���(����, ����)
22. Else �� = 	
���(����/%�5*6�+, ����/%�5*6�+)
23. End If

24. #� = � +	��
25. End For

26. End If

27. For %	 = 	1 to ��
28. If &(�) ≤ &(#�) Then

29. �	 = 	 #� /∗	move	the	raindrop	to	the	best	improved	location ∗/

30. �`a�? = ��
31. [�\
*�-� = True

32. End If

33. End For

34. Until Stopping criteria satisfied

35. Output: Best solution found.

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

b) Scenario 2 (solution is not improved in the previous

iteration): If the solution is not improved in the previous

step (i.e.,	∀#� : &(#�) > &(�)) then at the next iteration, the

raindrop stays at the same location and new random

splashes will be generated (see Fig. 1(b)). Steps 17–26 from

Table 1 show the implementation of Scenario 2 splash

replacement strategy.

C. Selection Strategy

In every iteration, the best splash is selected and the

raindrop moves to a new location based on best

improvement strategy (steepest decent for a minimization

problem).

� = $#`a�? , %&	&(#`a�?) < &(�)	˄	∀#�: &(#`a�?)< &(#�), % ∈ (1, ��)�, *+ℎ-
.%#-																																																 (7)

Where #`a�? is the best improving splash. Steps 28–31 from

Table 1 show the implementation of splash selection

strategy.

As we generate raindrop splashes in every iteration, some

of the splashes may go off the upper or lower bounds (����, ����) of the variable due to the randomness of the system.

Thus, every splash generated is bounded by the problem

bounds as follows:

Let #�(#��, #��, … , #�
) be the %?t	splash with its

displacement	��(���, ���, … , ��
), and �	(��, ��, … , �
) be

the location of the current drop, then the displacement and

the location of the splash is generated according to the

following rule: #� = � +	�`a�?		if the solution is improved in the

previous step, otherwise, the every splash is generated

similar to equation 4.

#�) = $ ����,																		%&	�) + ��) < ��������,																		%&	�) + ��) > �����) + ��) ,													*+ℎ-
.%#-															 (8)

where �`a�?is displacement of the best improved splash in

the previous step.

IV. EXPERIMENTAL COMPARISON AND SETTINGS

This section describes one of the most widely used S-

metaheuristics, simulated annealing (SA), to compare

against the performance and quality of the proposed

algorithms. Parameter settings for each algorithm, and the

benchmark problems used in our experiments are also

explained.

(a) Scenario 1: The solution is improved in the previous iteration.

(b) Scenario 2: The solution is not improved in the previous iteration.

Fig. 1. Raindrop with its associated splash displacements and positions. a) Scenario 1:	∃#�: &(#�) < &(�); at the next iteration,

the raindrop moves to the location of best improved splash in the decision space. Reduce the number of splashes by half and the

displacement of the one of the splash is that of the best improved splash. b) Scenario 2:	∀#�: &(#�) > &(�); at the next iteration,

the raindrop stays at the same location and generates new splashes.

4

Administrator
Highlight

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

TABLE II. SRD, OSRD, AND BSRD PARAMETER SETTINGS. GQMR: LOWER

VARIABLE BOUND,		GQSG: UPPER VARIABLE BOUND, K: PROBLEM

DIMENSION, AND uvVwwORP: CURRENT CANDIDATE SOLUTION.

Initial solution Uniform random number

Max number of splashes �� = x110y + 3

New solution
z{>||a�?+ 	
��� 8 ����%�5*6�+ , ����%�5*6�+B

A. Simulated Annealing

Simulated annealing (SA) is a single-solution based
probabilistic optimization method proposed by Kirkpatrick
and Vecchi [14]. SA is inspired by the physical process
whereby materials are treated with heat and slowly cooled to
alter their microstructure and as a result they have a strong
crystalline structure.

Like all S-metaheuristics, SA starts with a single
candidate solution. At each iteration, a random neighbor is
generated and compared with the current candidate solution.
If the neighbor point improves the current solution then the
current solution is replaced by the neighbor candidate
solution. Otherwise, the current solution is accepted based on
a given probability that depends on the current temperature
and the amount of energy difference between the neighbor
point and the current point. This characteristic of SA allows
non-improving solutions to be accepted and hence avoiding
being trapped in local optima.

At each level of temperature, many neighbors are
explored until an equilibrium state is reached. Then, the
temperature is gradually decreased according to a cooling
schedule (usually by a geometric scheduling [14]) so that
few and few non-improving solutions are accepted. Finally,
SA terminates when the stopping criteria is met (e.g., when
the probability of accepting a move is negligible because the
temperature is close to 0). Table III reproduces the SA
algorithm.

TABLE III. PSEUDOCODE FOR SIMULATED ANNEALING (SA). }H: INITIAL

CANDIDATE SOLUTION, ~QSG: INITIAL TEMPERATURE,	}′: NEIGHBOUR

SOLUTION, ∆�: ENERGY DIFFERENCE BETWEEN THE CURRENT SOLUTION

AND THE NEIGHBOR CANDIDATE SOLUTION, �(~): TEMPERATURE UPDATE

FUNCTION, AND W(∙): OBJECTIVE FUNCTION.

Simulated Annealing Algorithm #	 = 	#Y ; /∗ Generation of the initial solution ∗/ �	 = 	 ���� ; /∗ Starting temperature ∗/

Repeat

 Repeat /∗ At a fixed temperature ∗/

 Generate a random neighbor #′ ;
 	∆�	 = 	&	(#′) 	− 	&	(#)	;	
 If 	∆�		 ≤ 	0 Then #	 = 	#′ /∗ Accept the

neighbor solution ∗/

 Else Accept s′ with a probability -�∆��

 Until Equilibrium condition

 �	 = 	�(�); /∗ Temperature update ∗/

Until Stopping criteria satisfied

Output: Best solution found.

 The control parameters set for SA in all our experiments
are in Table IV.

B. Benchmark Functions

In order to test the quality of the SRD and comparing that
with the SA, we have utilized 8 widely used minimization
benchmark functions [15-17]. All test functions have an
optimum value at zero except	&�; the optimum value is
located at one. All test functions are scalable problems, in
which functions &� –	&� and &� are unimodal and functions &�	, &� and f� are multimodal. Despite the fact &� is a
unimodal function, it is non-convex and the optimum value
is located inside a long, narrow, parabolic shaped flat valley
which makes it very challenging for many optimizers. All
the test functions used in this paper are to be minimized.
Table V shows the numerical benchmark functions utilized
in this study.

TABLE IV. SA PARAMETER SETTINGS. GQMR: LOWER FUNCTION

BOUND,	GQSG: UPPER FUNCTION BOUND, K: PROBLEM DIMENSION, AND uvVwwORP: CURRENT CANDIDATE SOLUTION.

Initial solution Uniform random

New solution z{>||a�? + 	
��� 8����15 , ����15 B

Starting temperature 400

Cooling schedule � = 0.99 × �

Stopping criteria ��5 = 1000 × 1

V. EXPERIMENTAL SETTINGS AND VERIFICATION

Three series of experiments have been conducted for the
comparison of the proposed method versus the traditional SA
using the eight selected scalable benchmark functions. The
main difference among these three experiments consisted in
the dimension of the problems. The experiments consisted in
having a respective dimensionality of 30, 50, and 100. The
stopping criteria for all the algorithms are	1000 × 1, where 1 is the problem dimension.

The results did not vary much for 1 = 30 and 1 = 50;
therefore, only experiments with 1 = 30 and 1 = 100 will
be discussed. However, the results for 1 = 50 can be found
in Table VII and Figure 3.

As explained earlier, the proposed method is compared
with SA. Due to the stochastic nature of the SRD and SA,
each method is executed independently 50 times. The mean
and standard deviations are compiled for comparison
purposes. t-tests were performed with the null hypothesis
that two means are equal with 0.95 confidence value.

A. Experimental Series 1: Low Dimension (D=30)

The first experiment is conducted in running the two

optimization methods to solve the selected benchmark

problems. The number of variables is fixed to 30.

 As illustrated in Table VI, the results show that the
proposed method outperforms SA on all the eight benchmark
problems. Moreover, the results found by the SRD had lower
standard deviation (i.e., the results found by SRD are more
consistent because of a low fluctuation).

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

TABLE V. NUMERICAL BENCHMARK FUNCTIONS USED IN THIS STUDY

Problem Objective Function Variable Bounds Global Optimum

De Jong &�(�) =�����
���

 −5.12 ≤ �� ≤ 5.12 &�(0,… ,0) = 0

Axis Parallel Hyper-

Ellipsoid &�(�) =�%����
���

 −5.12 ≤ �� ≤ 5.12 &�(0,… ,0) = 0

Schwefel’s Problem 1.2 &�(�) =����)�
)��

�
��

���
 −65 ≤ �� ≤ 65 &�(0,… ,0) = 0

Rosenbrock’s Valley &�(�) =��100(���� − ���)� + (1 − ��)�����
���

 −2 ≤ �� ≤ 2 &�(1,… ,1) = 0

Rastrigin’s Function &�(�) = 10� +����� − 10cos	(2���)��
���

 −5.12 ≤ �� ≤ 5.12 &�(0,… ,0) = 0

Griewangk’s Function &�(�) =� ���4000 −¡cos ¢��√%¤
�
���

+ 1�
���

 −600 ≤ �� ≤ 600 &�(0,… ,0) = 0

Sum of Different Power &�(�) =�|��|(���)�
���

 −1 ≤ �� ≤ 1 &�(0,… ,0) = 0

Ackley’s Problem &�(�) = −20-�\�−0.2¦∑ �������� �
− -�\¨�cos(2���)�

�
���

©+ 20
+ -

−32 ≤ �� ≤ 32 &�(0,… ,0) = 0

It can be seen that the proposed method performed very
well for problems &�, &�, &�, &� and &� by finding near to
optimal solutions. The performance SRD for problems	&�,
and &�was modest. And, it had more difficulties with the
problem &�. In overall, &� can be considered as the most
difficult problem.

TABLE VI. COMPARISON OF SA AND SRD (D = 30). MEAN BEST AND

STANDARD DEVIATION (STD DEV) OF 50 RUNS AND 30,000 FUNCTION

CALLS ARE REPORTED. THE BEST ALGORITHM IS EMPHASIZED IN

EMPHASIZED IN BOLDFACE. “*” INDICATES THE TWO-TAILED T-VALUE AT

0.05 LEVEL OF SIGNIFICANCE.

 SA SRD

 Mean (Std Dev) Mean (Std Dev)

&� 1.537765 (0.7493272) 4.192E-09 (1.696E-09)*

&� 1.1505374 (0.3939867) 2.345E-05 (9.468E-06)* &� 17.57048 (9.3081783) 0.0010048 (0.0003012)* &� 26.451223 (2.9499834) 22.8139 (1.838198) &� 295.25987 (80.046491) 262.1036 (51.27188)* &� 1.7401887(0.228839) 0.01437 (0.0104781)* &� 0.1616829 (0.077932) 3.201E-08 (7.458E-09)* &� 21.198157(0.1448411) 19.488083 (0.1719674)*

 The proposed method outperformed significantly SA for
the problem	&�. It offered better precision for the
problems	&�, &�, &�, &�, and &�. Finally, it offers better
precision than SA for the problems &� and &�; however, the

difference was not as large as the other previous problems.
According to the t-test results, all except for problem &�are
statistically significant. Moreover, SRD exhibited
significantly lower standard deviation in all problems, except
for problems	&�	and &�, indicating more robust results.

When comparing the convergence of SRD and SA, SRD
exhibited a rapid convergence in all test problems except in &�and &�. However, SRD achieved better final result in these
test problems. Figure 2 show the convergence SRD and SA.
For each convergence related experiments, the initial
solution was kept the same for both algorithms.

TABLE VII. COMPARISON OF SA AND SRD (D = 50). MEAN BEST AND

STANDARD DEVIATION (STD DEV) OF 50 RUNS AND 50,000 FUNCTION

CALLS ARE REPORTED. THE BEST ALGORITHM IS EMPHASIZED IN

EMPHASIZED IN BOLDFACE. “*” INDICATES THE TWO-TAILED T-VALUE AT

0.05 LEVEL OF SIGNIFICANCE.

SA SRD

Mean (Std Dev) Mean (Std Dev)

&� 0.4026678 (0.1439543) 7.28E-09 (1.834E-09)* &� 1.0377076 (0.8782136) 0.0006575 (0.0004058)* &� 232.8676 (57.337249) 0.0419695 (0.0114963)* &� 48.59713 (12.653562) 45.0707 (10.167395) &� 709.02457 (144.91634) 428.55917 (52.153313)* &� 0.8623445 (0.0574953) 0.0093709 (0.0106182)* &� 0.0004592 (0.0001943) 2.11E-08 (4.977E-09)* &� 20.115243 (0.0408853) 19.471323 (0.1429701)*

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

(a) &�

(b) &�

Fig. 2. Sample graphs (best solution versus NFCs) for performance comparison between SA and SRD for D = 30.

(a) &� (b) &�

Fig. 3. Sample graphs (best solution versus NFCs) for performance comparison between SA and SRD for 1	 = 	50.

(a) &� (b) &�

Fig. 4. Sample graphs (best solution versus NFCs) for performance comparison between SA and SRD for 1	 = 	100.

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

TABLE VIII. COMPARISON OF SA AND SRD (D = 100). MEAN BEST

AND STANDARD DEVIATION (STD DEV) OF 50 RUNS AND 100,000

FUNCTION CALLS ARE REPORTED. THE BEST ALGORITHM IS

EMPHASIZED IN EMPHASIZED IN BOLDFACE. “*” INDICATES THE

TWO-TAILED T-VALUE AT 0.05 LEVEL OF SIGNIFICANCE.

 SA SRD

 Mean (Std Dev) Mean (Std Dev)

&� 0.6968165 (0.1178876) 2.763E-08 (6.453E-09)* &� 35.375615 (33.543331) 0.1051867 (0.1060622)* &� 6924.7173 (1265.7867) 25.772213 (7.279176)* &� 104.29411 (19.064743) 102.62772 (18.440902) &� 2144.934 (289.38708) 875.06103 (69.284618)* &� 0.6414077 (0.0430748) 0.0046485 (0.0071604)* &� 2.346E-07 (7.023E-08) 9.558E-09 (1.591E-09)* &� 20.05514 (0.0120609) 19.510647 (0.1054413)*

B. Experimental Series 2: High Dimension (D=100)

 The results of higher dimension (1 = 100) are shown in

Table VIII. Similar to lower dimesion results the proposed

method outperformed SA in terms of the quality of the

result and covergence speed. However, similar to the

previous experiments, the t-test did not pass for the test

problem &�. Figures 2 to 4 show that as the problem

dimension incresases, the gap between SA and SRD also

increases (interms candidate solution accuracy). Moreover,

as compared to SA, the proposed method show significant

improvement in the consistency of the solution found except

for problem &� (i.e., the standard deviation was significantly

lower than that of SA).

VI. CONCLUSION

This paper proposed the simulated raindrop (SRD)

algorithm, a single-solution based optimization

metaheuristic method. SRD optimization is inspired by

raindrops travel from a higher altitude to a lower point on

the landscape due to gravity. The performance of SRD was

compared against the well-known single-solution based

metaheuristic, Simulated Annealing (SA). Eight benchmark

problems have been used for comparison purposes with

dimensionalities of 30, 50, and 100.

In all test problems the proposed method outperformed

SA in terms of solution accuracy. The SRD was statistically

better than SA on seven test problems out of eight. Almost

in all test problems, regardless of their dimensionality, SRD

had better convergence speed and robustness. Moreover, as

we increased the problem dimension from 1 = 30 to	1 =50, and 1 = 100, SRD better results compare to SA in

terms of the consistency of the solution found.

For future work, we would like to extend SRD to a

population based metaheuristic and compare the

performance against other population-based methods, such

as GA, DE and PSO.

REFERENCES

[1] S. Binitha & S. S. Sathya, “A Survey of Bio inspired Optimization
Algorithms,” International Journal of Soft Computing and
Engineering (IJSCE), ISSN: 2231-2307, Volume-2, Issue-2, 2012.

[2] C. R. Reeves, , & J. E. Rowe, . “Genetic algorithms-principles and
perspectives: a guide to GA theory,” (Vol. 20). Springer, 2002.

[3] E.Talbi, “Metaheuristics from design to implementation,” John Wiley
and Sons, ISBN: 978-0470-27858-1, 2009.

[4] J. H. Holland, “Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and
artificial intelligence,” MIT press, 1992.

[5] R. Storn and K. Price, “Differential evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces,”
Technical report. International Computer Science Institute, Berkley,
1995.

[6] J. Kennedy and R. C. Eberhart,“Particle swarm optimization,” In
Proceedings of the 1995 IEEE International Conference on Neural
Network, Vol. 4. pp. 1942-1948. IEEE Press, 1995.

[7] M. Dorigo, “Optimization, learning and natural algorithms,” PhD
thesis, Politecnico di Milano, Italy, 1992.

[8] H. Shah-Hosseini,, “Problem solving by intelligent water drops,”
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on ,
vol., no., pp.3226-3231, 25-28 Sept. 2007.

[9] H. Shah-Hosseini, “Intelligent water drops algorithm: a new
optimization method for solving the multiple knapsack problem,” Int.
Journal of Intelligent Computing and Cybernetics, Vol. 1, No. 2, pp.
193-212, 2008a.

[10] H. Shah-Hosseini, “The Intelligent Water Drops algorithm: A nature-
inspired swarm-based optimization algorithm,” Int. J. Bio-Inspired
Computation, Vol. 1, Nos.1/2, pp. 71–79, 2008b.

[11] H. Duan, , S. Liu & X. Lei, “Air robot path planning based on
Intelligent Water Drops optimization,” IEEE IJCNN 2008, pp. 1397 –
1401, 2008.

[12] H. Shah-Hosseini, “Optimization with the nature-inspired intelligent
water drops algorithm,” Evolutionary computation. Tech, Vienna,
Austria, pp. 297-320, 2009.

[13] H. Shah-Hosseini, “An approach to continuous optimization by the
Intelligent Water Drops algorithm,” Procedia - Social and Behavioral
Sciences, Volume 32, pp.224-229, 2012.

[14] S. Kirkpatrick, & M. P. Vecchi, “Optimization by simmulated
annealing,”. science, 220(4598), pp. 671-680, 1983.

[15] X. Yao, Y. Liu and G. Lin, “Evolutionary Programing Made Faster,”
IEEE Transacations on Evolutionary Computation, vol. 3, pp.82-102,
July 1999.

[16] E. Ali, and S. Rahnamayan. “Center-point-based Simulated
Annealing,” Electrical & Computer Engineering (CCECE), 25th
IEEE Canadian Conference on. IEEE, 2012.

[17] J. Brest, S. Greiner, B. Boskovic, M. Mernik, & V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,”. Evolutionary
Computation, IEEE Transactions on, 10(6), pp. 646-657, 2006.

8

