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Abstract— In this paper, we propose a novel single-solution 

based metaheuristic algorithm called Simulated Raindrop 

(SRD). The SRD algorithm is inspired by the principles of 

raindrops. When rain falls on the land, it normally flows from 

higher altitude to a lower due to gravity, while choosing the 

optimum path towards the lowest point on the landscape. We 

compared the performance of simulated annealing (SA) 

against the proposed SRD method on 8 commonly utilized 

benchmark functions. Experimental results confirm that SRD 

outperforms SA on all test problems in terms of variant 

performance measures, such as convergence speed, accuracy of 

the solution, and robustness. 

Keywords—Nature-inspired algorithms; S-metaheuristic; 

raindrop; global optimization; simulated annealing. 

I. INTRODUCTION 

Nowadays, real-world applications are increasingly 
complex and more encompassing, in the sense that more 
decision variables are used to model complex situations and 
more input data and parameters are available to capture the 
complexity of the problems themselves. As a result, most 
real-world optimization problems cannot be solved using 
polynomial-time algorithms (i.e., they are NP-hard 
problems). Since finding exact or approximate  solutions in 
NP-complete and NP-hard problems still poses a real 
challenge despite the impact of recent advances in computer 
technology, there are numerous approximation methods 
capable of finding “good” solutions in a “reasonable” time. 
Due to the inherent complexities and dynamics we have in 
nature, and its ability to approach its own problems, nature is 
the main source of inspiration for solving our complex 
problems [1].  

Most  nature-inspired algorithms are population based, in 
which multiple agents interact to solve or accomplish a given 
task. Though arguably nature-inspired algorithms are still at 
their early stages, many have shown a great potential in 

solving very complicated problems with diverse applications 
in engineering, business, economics, and communication 
networks. For example, evolutionary algorithms (EAs) are 
nature-inspired population-based methods taken from the 
biological evolution of living organisms to adapt to their 
ecosystem.  The main genetic-based operations of EAs are 
selection (the fittest organisms replace the weakest for the 
next generation) [2], mutation (a subset of genes is chosen 
randomly and the allele value of the chosen genes is 
changed), and crossover (replacing some of the genes in one 
parent by corresponding genes of the other). There has been 
numerous biological evolution inspired algorithms since the 
early 1990s and among all EAs, genetic algorithms (GAs) 
are especially popular [3]. 

GA is the first evolutionary-based stochastic optimization 
algorithm in which organisms evolve by rearranging genetic 
material to survive in hostile environments challenging them. 
GA was proposed by Holland [4] and it has shown 
outstanding achievements in solving many economics, 
engineering and science real-world applications. Differential 
Evolution (DE) is also one of the most successful 
evolutionary algorithms; developed by Rainer Storn and 
Kenneth Price [5], it has solved numerous global 
optimization problems effectively.  The main components of 
DE and GA are similar except that in DE mutation is the 
result of arithmetic combinations of individuals whereas in 
GA mutation is the result of small perturbations to the genes 
of an individual. 

Another nature-inspired population-based algorithm is 
swarm intelligence. It is inspired from the social behaviour 
of species such as ants, bees, wasps, termite, fish, and birds 
which cooperate or compete for food.  Among the most 
successful swarm-based optimization algorithms are particle 
swarm optimization (PSO) and ant colony optimization 
(ACO). PSO was introduced by Kennedy and Eberhart [6] in 
1995. PSO simulate the behaviour of a flock of birds. In 

CCECE 2014 1569888639

1

978-1-4799-3010-9/14/$31.00 ©2014 IEEE CCECE 2014 Toronto, Canada



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

PSO, each solution is a “particle” and each particle has two 
values: fitness value which is calculated by fitness function, 
and velocity which indicates the direction of particles. ACO 
was proposed by Dorigo [7] as his PhD thesis. ACO mimics 
the collective behavior of ants to perform complex tasks such 
as transportation of food and finding food sources. It was 
observed that ants communicate using a chemical trail called 
pheromone that is left on the ground during their journey to 
and from food sources and their nest. Remarkably an ant 
colony is able to find the shortest path between two points 
using the smelt quantity of pheromone. 

    The organization of the paper is as follows: Section II 

discusses related work, mainly an intelligent water drop 

algorithm. Section III provides the technical description of 

the proposed algorithm, called simulated raindrop (SRD).  

Section IV briefly discusses simulated annealing (SA) and 

defines the benchmark continuous optimization functions 

utilized in our experiments. Section V provides the 

experimental settings and corresponding results. Finally, 

Section VI concludes with a summary and future work. 

II. RELATED WORK 

In 2007, Shah-Hosseini [8] proposed a population-

based heuristic algorithm - called intelligent water drops 

algorithm (IWD) - for solving the traveling salesman 

problem. IWD algorithm tries to simulate the processes that 

occur in the natural river systems and the interaction among 

water drops in a river. He observed that a river often 

chooses an optimum path regarding the conditions of its 

surroundings before it reaches a lake or sea. He and others 

later adopted the IWD algorithm to successfully solve a 

number of known optimization problems, such as: 

Multidimensional Knapsack Problem (MKP) [9], n-queen 

puzzle [10], and Robot Path Planning [10], and automatic 

multilevel thresholding [12]. 

 

In 2012, Shah-Hosseini [13] also proposed an IWD for 

continuous optimization (IWD-CO) where he combined 

IWD with a mutation-based local search (IWD-CO) to find 

the optimal values of numerical functions. Although he 

showed that the IWD algorithm can be modified to handle 

continuous optimization, his work needs further 

experimental verification with regard convergence speed 

and solution accuracy.  

 

While the inspirations for IWD and SRD are similar, 

they have very different approach in representing/solving 

optimization problems. First of all, IWD is a population-

based heuristic (problem-specific) algorithm whereas SRD 

is a single-solution based metaheuristic. Second, the 

mechanics of IWD is different form SRD: IWD updates its 

current location to the next location/path based on the 

amount of soil on its beds and updates the velocity by the 

amount nonlinearly proportional to the inverse of the soil 

between the two locations.  On the other hand SRD updates 

its current to the next solution based on the splash generated 

by the rain drop as it hits the ground. In SRD, the use of 

splashes is discussed in the next section.   

III. PROPOSED SRD ALGORITHM 

The SRD algorithm is a single-solution based 

metaheuristics (S-metaheuristics) inspired by the principles 

of raindrops. When rain hits ground, it tends to keep moving 

towards the lowest point on the landscape due to gravity. 

Similar to all S-metaheuristics, SRD starts with a single 

candidate solution and tries to improve it by selecting 

promising candidate solutions from a set of generated 

candidates. The analogy between the physical rainfall and 

SRD are as follows: the terrain represents the objective 

function; the flow of water from higher altitude to lower 

altitude is similar to local search on raindrop splashes, and 

the lowest point on the landscape is the optimal solution. 

A. Intialization 

Similar to all stochastic heuristics or metaheuristic 

algorithms, SRD starts by generating an initial candidate 

solution. This initialization (raindrop) is selected uniform 

randomly as follows: 

 

Let �	 = {��, ��, ��, … , �
} represent an initial candidate 

solution, then �� = 
���(����	, ����)  (1) 

�� = �
�� + �                        (2) 

�� = 	
���(��� 	, ��!"	)																									(3)		
#� = $ ���� ,																		%&	�� + �� < �������� ,																		%&	�� + �� > �����) + �� ,													*+ℎ-
.%#-																,			(4)	

where % = {1,2, … , 1}, 1 is the problem dimension, ����	 
and ����	 are the variable boundaries, �� number of 

splashes, � is the splash displacement, # is the splash 

location and � and � are control parameters. The main goal 

of Eq. 2 is to establish the minimum number of splashes 

generated by a given problem to � at the increment of one 

for every � dimension. In this paper, � = 3	and � = 10	are 

selected to be the optimal control parameter values after 

running some trail experiments. Since this work is in its 

initial stages, we need to conduct control parameter analysis 

as we move forward with this research.  

B. Splash Generation 

In every iteration, SRD generates �� splashes for the 

raindrop. The main purpose of the splashes is to “sense” the 

neighboring landscape so that they guide the raindrop to the 

next best location. Splashes are generated b according to the 

following rules. 

 

1) Splash displacment: SRD has a constant splash size 

(interms of its radius) where the size of splashes are not 

consistently increasing or decreasing. However the 

dispalcement of every splash varies. The splash 

displacement has an essential role in the efficiency of the 

algorithm. The splash dispacement is defined as follows:  

2
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�� = 4
���(����, ����),																						%�5*6�+ ≤ 0					
��� 8 �9:;��<=>�? , �9@A��<=>�?B ,										*+ℎ-
.%#-										(5) 

 

where ����	 and ����	 are the variable boundaries, and %�5*6�+ is the difference of non-improving moves and 

improving moves so far and it is defined as: 

 

%�5*6�+ = $%�5*6�+ + 1, %&	∃#�: &(#�) < &(�),																																							% ∈ (1, ��)						%�5*6�+ − 1, *+ℎ-
.%#-																       (6) 

At the earlier stages (iteration) of the algorithm the 

displacement is large; thus this will encourage the 

diversification in the search space during the exploration 

phase. As the raindrop approaches the optimal solution 

during exploitation, the displacement of the splashes 

decrease and this will intensify the search in the optimal 

region of the search space. Steps 9, 11–12 and 21–22 from 

Table 1 indicate the implementation of splash sizing 

strategy. 

2) Splash replacement strategy: Splashes are generated 

and replaced according to the folowing rules. 

a) Scenario 1 (solution is improved in the previous 

iteration): If the solution is improved in the previous step 

(i.e.,	∃#�: &(#�) < &(�)) then at the next iteration the 

raindrop moves to the location of best improved splash in 

the search space. Moreover, the number of splashes are 

reduced by half, and the displacement of one of the splash 

will be the same as the displacement of the best improved 

splash in the previous step (see Fig. 1(a)). This is from our 

observation that water streams tend to move in the same 

direction unless the landscape changes. Thus, it is not 

necessary to generate as many splashes as the original 

number of splashes. As such this feature will result in the 

reduction of the function calls. However, since the best 

improving path (displacement) is not guaranteed to be the 

optimal path,  we still generate random splashes to “sense” 

the landscape in search of a better candidate solution. Steps 

6–16 from Table 1 implement the Scenario 1 splash 

replacement strategy.       

TABLE I. PSEUDOCODE FOR SIMULATED RAINDROP (SRD). GH: INITIAL CANDIDATE SOLUTION, IJ: MAXIMUM NUMBER OF SPLASHES,	K: PROBLEM  DIMENSION, IL: NUMBER OF SPLASHES IN THE CURRENT ITERATION, LM: DISPLACEMENT OF THE MTH SPLASH, LNOJP: THE BEST IMPROVED DISPLACEMENT, GQMR: LOWER 

VARIABLE BOUND,	GQSG: UPPER VARIABLE BOUND,	MQTUVRP: THE DIFFERENCE OF IMPROVING AND NON-IMPROVING MOVES, AND W(∙):OBJECTIVE FUNCTION. 

Simulated Raindrop Algorithm (SRD) 

1. �	 = 	 �Y ; /∗ Generation of the initial candidate solution/raindrop ∗/ 
2. �� = �
�� + �; /∗Number of splashes ∗/	
3. [�\*�-� =	False; /∗ Initialize move info∗/ 

4. %�5*6�+	 = 	0 /∗ Initialize improving move count to zero ∗/ 

5. Repeat 

6.      If %�\*�-� Then  

7.            %�5*6�+ − −; 

8.           �] = 	
���(1, �� 2⁄ ) /∗ Generate at most ��/2 splashes ∗/ 

9.             #� = � +	�`a�? 
10.             For %	 = 	2 to  �] 

11.                     If %�5*6�+ ≤ 0 Then �� = 	
���(����, ����) 
12.                     Else  �� = 	
���(����/%�5*6�+, ����/%�5*6�+)     
13.                     End If 

14.                     #� = � +	��  
15.             End For 

16.             [�\
*�-� = False 

17.      Else 

18.            %�5*6�+ + +; 

19.            �] 	 = 	
���(1,��) 
20.             For %	 = 	2 to  �] 

21.                     If %�5*6�+ ≤ 0 Then �� = 	
���(����, ����) 
22.                     Else  �� = 	
���(����/%�5*6�+, ����/%�5*6�+)     
23.                     End If 

24.                     #� = � +	��  
25.             End For 

26.      End If 

27.      For %	 = 	1 to  �� 
28.             If &(�) ≤ &(#�) Then  

29.                   �	 = 	 #� /∗	move	the	raindrop	to	the	best	improved	location ∗/ 

30.                   �`a�? = �� 
31.                   [�\
*�-� = True 

32.             End If 

33.       End For 

34. Until Stopping criteria satisfied  

35. Output: Best solution found. 
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b) Scenario 2 (solution is not improved in the previous 

iteration): If the solution is not improved in the previous 

step (i.e.,	∀#� : &(#�) > &(�)) then at the next iteration, the 

raindrop stays at the same location and new random 

splashes will be generated (see Fig. 1(b)). Steps 17–26 from 

Table 1 show the implementation of Scenario 2 splash 

replacement strategy.  

C. Selection Strategy  

In every iteration, the best splash is selected and the 

raindrop moves to a new location based on best 

improvement strategy (steepest decent for a minimization 

problem). 

� = $#`a�? , %&	&(#`a�?) < &(�)	˄	∀#�: &(#`a�?)< &(#�), % ∈ (1, ��)�, *+ℎ-
.%#-																																																       (7) 

Where #`a�? is the best improving splash. Steps 28–31 from 

Table 1 show the implementation of splash selection 

strategy.   

As we generate raindrop splashes in every iteration, some 

of the splashes may go off the upper or lower bounds (����, ����) of the variable due to the randomness of the system. 

Thus, every splash generated is bounded by the problem 

bounds as follows: 

Let #�(#��, #��, … , #�
) be the %?t	splash with its 

displacement	��(���, ���, … , ��
), and �	(��, ��, … , �
) be 

the location of the current drop, then the displacement and 

the location of the splash is generated according to the 

following rule: #� = � +	�`a�?		if the solution is improved in the 

previous step, otherwise, the every splash is generated 

similar to equation 4. 

#�) = $ ����,																		%&	�) + ��) < ��������,																		%&	�) + ��) > �����) + ��) ,													*+ℎ-
.%#-															           (8) 

where �`a�?is displacement of the best improved splash in 

the previous step. 

IV. EXPERIMENTAL COMPARISON AND SETTINGS 

This section describes one of the most widely used S-

metaheuristics, simulated annealing (SA), to compare 

against the performance and quality of the proposed 

algorithms. Parameter settings for each algorithm, and the 

benchmark problems used in our experiments are also 

explained. 

  

 
(a) Scenario 1: The solution is improved in the previous iteration. 

 
(b) Scenario 2: The solution is not improved in the previous iteration. 

 
Fig. 1. Raindrop with its associated splash displacements and positions. a) Scenario 1:	∃#�: &(#�) < &(�); at the next iteration, 

the raindrop moves to the location of best improved splash in the decision space. Reduce the number of splashes by half and the 

displacement of the one of the splash is that of the best improved splash.  b) Scenario 2:	∀#�: &(#�) > &(�); at the next iteration, 

the raindrop stays at the same location and generates new splashes. 
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TABLE II. SRD, OSRD, AND BSRD PARAMETER  SETTINGS. GQMR: LOWER 

VARIABLE BOUND,		GQSG: UPPER VARIABLE BOUND, K: PROBLEM 

DIMENSION, AND uvVwwORP: CURRENT CANDIDATE SOLUTION. 

Initial solution Uniform random number  

Max number of splashes �� = x110y + 3 

New solution 
z{>||a�?+ 	
��� 8 ����%�5*6�+ , ����%�5*6�+B 

 

A. Simulated Annealing 

Simulated annealing (SA) is a single-solution based 
probabilistic optimization method proposed by Kirkpatrick 
and Vecchi [14].  SA is inspired by the physical process 
whereby materials are treated with heat and slowly cooled to 
alter their microstructure and as a result they have a strong 
crystalline structure.  

Like all S-metaheuristics, SA starts with a single 
candidate solution. At each iteration, a random neighbor is 
generated and compared with the current candidate solution. 
If the neighbor point improves the current solution then the 
current solution is replaced by the neighbor candidate 
solution. Otherwise, the current solution is accepted based on 
a given probability that depends on the current temperature 
and the amount of energy difference between the neighbor 
point and the current point. This characteristic of SA allows 
non-improving solutions to be accepted and hence avoiding 
being trapped in local optima.  

At each level of temperature, many neighbors are 
explored until an equilibrium state is reached. Then, the 
temperature is gradually decreased according to a cooling 
schedule (usually by a geometric scheduling [14]) so that 
few and few non-improving solutions are accepted. Finally, 
SA terminates when the stopping criteria is met (e.g., when 
the probability of accepting a move is negligible because the 
temperature is close to 0).  Table III reproduces the SA 
algorithm. 

TABLE III. PSEUDOCODE FOR SIMULATED ANNEALING (SA). }H: INITIAL 

CANDIDATE SOLUTION, ~QSG: INITIAL TEMPERATURE,	}′: NEIGHBOUR 

SOLUTION, ∆�: ENERGY DIFFERENCE BETWEEN THE CURRENT SOLUTION 

AND THE NEIGHBOR CANDIDATE SOLUTION, �(~): TEMPERATURE UPDATE 

FUNCTION, AND W(∙): OBJECTIVE FUNCTION. 

Simulated Annealing Algorithm #	 = 	#Y ; /∗ Generation of the initial solution ∗/ �	 = 	 ���� ; /∗ Starting temperature ∗/ 

Repeat 

       Repeat /∗ At a fixed temperature ∗/ 

            Generate a random neighbor #′ ; 
           	∆�	 = 	&	(#′) 	− 	&	(#)	;	
            If 	∆�		 ≤ 	0 Then #	 = 	#′  /∗ Accept the            

neighbor solution ∗/ 

            Else Accept s′ with a probability -�∆��  

       Until Equilibrium condition 

       �	 = 	�(�); /∗ Temperature update ∗/ 

Until Stopping criteria satisfied  

Output: Best solution found. 

  

 The control parameters set for SA in all our experiments 
are in Table IV. 

B. Benchmark Functions 

In order to test the quality of the SRD and comparing that 
with the SA, we have utilized 8 widely used   minimization 
benchmark functions [15-17]. All test functions have an 
optimum value at zero except	&�; the optimum value is 
located at one. All test functions are scalable problems, in 
which functions &� –	&�  and &� are unimodal and functions &�	,  &� and f�  are multimodal. Despite the fact &� is a 
unimodal function, it is non-convex and the optimum value 
is located inside a long, narrow, parabolic shaped flat valley 
which makes it very challenging for many optimizers.  All 
the test functions used in this paper are to be minimized. 
Table V shows the numerical benchmark functions utilized 
in this study. 

TABLE IV. SA PARAMETER  SETTINGS. GQMR: LOWER FUNCTION 

BOUND,	GQSG: UPPER FUNCTION BOUND, K: PROBLEM  DIMENSION, AND uvVwwORP: CURRENT CANDIDATE SOLUTION. 

Initial solution Uniform random 

New solution z{>||a�? + 	
��� 8����15 , ����15 B 

Starting temperature 400 

Cooling schedule  � = 0.99 × � 

Stopping criteria ��5 = 1000 × 1 

V. EXPERIMENTAL SETTINGS AND VERIFICATION 

Three series of experiments have been conducted for the 
comparison of the proposed method versus the traditional SA 
using the eight selected scalable benchmark functions. The 
main difference among these three experiments consisted in 
the dimension of the problems. The experiments consisted in 
having a respective dimensionality of 30, 50, and 100. The 
stopping criteria for all the algorithms are	1000 × 1, where 1 is the problem dimension. 

The results did not vary much for 1 = 30 and 1 = 50; 
therefore, only experiments with 1 = 30 and 1 = 100 will 
be discussed.  However, the results for 1 = 50 can be found 
in Table VII and Figure 3. 

As explained earlier, the proposed method is compared 
with SA. Due to the stochastic nature of the SRD and SA, 
each method is executed independently 50 times. The mean 
and standard deviations are compiled for comparison 
purposes. t-tests were performed with the null hypothesis 
that two means are equal with 0.95 confidence value. 

A. Experimental Series 1: Low Dimension (D=30) 

The first experiment is conducted in running the two 

optimization methods to solve the selected benchmark 

problems.  The number of variables is fixed to 30.  

 
 As illustrated in Table VI, the results show that the 
proposed method outperforms SA on all the eight benchmark 
problems. Moreover, the results found by the SRD had lower 
standard deviation (i.e., the results found by SRD are more 
consistent because of a low fluctuation).  

5



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

TABLE V. NUMERICAL BENCHMARK FUNCTIONS USED IN THIS STUDY 

Problem Objective Function Variable Bounds Global Optimum 

De Jong &�(�) =�����
���

 −5.12 ≤ �� ≤ 5.12 &�(0,… ,0) = 0 

Axis Parallel Hyper-

Ellipsoid &�(�) =�%����
���

 −5.12 ≤ �� ≤ 5.12 &�(0,… ,0) = 0 

Schwefel’s Problem 1.2 &�(�) =����)�
)��

�
��

���
 −65 ≤ �� ≤ 65 &�(0,… ,0) = 0 

Rosenbrock’s Valley &�(�) =��100(���� − ���)� + (1 − ��)�����
���

 −2 ≤ �� ≤ 2 &�(1,… ,1) = 0 

Rastrigin’s Function &�(�) = 10� +����� − 10cos	(2���)��
���

 −5.12 ≤ �� ≤ 5.12 &�(0,… ,0) = 0 

Griewangk’s Function &�(�) =� ���4000 −¡cos ¢��√%¤
�
���

+ 1�
���

 −600 ≤ �� ≤ 600 &�(0,… ,0) = 0 

Sum of Different Power &�(�) =�|��|(���)�
���

 −1 ≤ �� ≤ 1 &�(0,… ,0) = 0 

Ackley’s Problem &�(�) = −20-�\�−0.2¦∑ �������� �
− -�\¨�cos(2���)�

�
���

©+ 20
+ - 

−32 ≤ �� ≤ 32 &�(0,… ,0) = 0 

 

It can be seen that the proposed method performed very 
well for problems &�, &�, &�, &� and &� by finding near to 
optimal solutions. The performance SRD for problems	&�, 
and &�was modest. And, it had more difficulties with the 
problem &�. In overall, &� can be considered as the most 
difficult problem.  

TABLE VI. COMPARISON OF SA AND SRD (D = 30). MEAN BEST AND 

STANDARD DEVIATION (STD DEV) OF 50 RUNS  AND 30,000 FUNCTION 

CALLS ARE REPORTED. THE BEST ALGORITHM IS EMPHASIZED IN 

EMPHASIZED IN BOLDFACE. “*” INDICATES THE TWO-TAILED T-VALUE AT 

0.05 LEVEL OF SIGNIFICANCE. 

  SA SRD 

  Mean (Std Dev) Mean (Std Dev) 

&� 1.537765 (0.7493272) 4.192E-09 (1.696E-09)* 

&� 1.1505374 (0.3939867) 2.345E-05 (9.468E-06)* &� 17.57048 (9.3081783) 0.0010048 (0.0003012)* &� 26.451223 (2.9499834) 22.8139 (1.838198) &� 295.25987 (80.046491) 262.1036 (51.27188)* &� 1.7401887(0.228839) 0.01437 (0.0104781)* &� 0.1616829 (0.077932) 3.201E-08 (7.458E-09)* &� 21.198157(0.1448411) 19.488083 (0.1719674)* 

  

 The proposed method outperformed significantly SA for 
the problem	&�. It offered better precision for the 
problems	&�, &�, &�, &�, and  &�. Finally, it offers better 
precision than SA for the problems &� and &�; however, the 

difference was not as large as the other previous problems. 
According to the t-test results, all except for problem &�are 
statistically significant. Moreover, SRD exhibited 
significantly lower standard deviation in all problems, except 
for problems	&�	and &�, indicating more robust results.  

When comparing the convergence of SRD and SA, SRD 
exhibited a rapid convergence in all test problems except in &�and &�. However, SRD achieved better final result in these 
test problems. Figure 2 show the convergence SRD and SA. 
For each convergence related experiments, the initial 
solution was kept the same for both algorithms.  

TABLE VII. COMPARISON OF SA AND SRD (D = 50). MEAN BEST AND 

STANDARD DEVIATION (STD DEV) OF 50 RUNS AND 50,000 FUNCTION 

CALLS ARE REPORTED. THE BEST ALGORITHM IS EMPHASIZED IN 

EMPHASIZED IN BOLDFACE. “*” INDICATES THE TWO-TAILED T-VALUE AT 

0.05 LEVEL OF SIGNIFICANCE. 

SA SRD 

Mean (Std Dev) Mean (Std Dev) 

&� 0.4026678 (0.1439543) 7.28E-09 (1.834E-09)* &� 1.0377076 (0.8782136) 0.0006575 (0.0004058)* &� 232.8676 (57.337249) 0.0419695 (0.0114963)* &� 48.59713 (12.653562) 45.0707 (10.167395) &� 709.02457 (144.91634) 428.55917 (52.153313)* &� 0.8623445 (0.0574953) 0.0093709 (0.0106182)* &� 0.0004592 (0.0001943) 2.11E-08 (4.977E-09)* &� 20.115243 (0.0408853) 19.471323 (0.1429701)* 
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(a) &� 

 
(b) &� 

Fig. 2.  Sample graphs (best solution versus NFCs) for performance comparison between SA and SRD for D = 30. 

 

(a) &� (b) &� 

Fig. 3. Sample graphs (best solution versus NFCs) for performance comparison between SA and SRD for 1	 = 	50.  

  

(a) &� (b) &� 

Fig. 4.  Sample graphs (best solution versus NFCs) for performance comparison between SA and SRD for 1	 = 	100. 
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TABLE VIII. COMPARISON OF SA AND SRD (D = 100). MEAN BEST 

AND STANDARD DEVIATION (STD DEV) OF 50 RUNS AND 100,000 

FUNCTION CALLS ARE REPORTED. THE BEST ALGORITHM IS 

EMPHASIZED IN EMPHASIZED IN BOLDFACE. “*” INDICATES THE 

TWO-TAILED T-VALUE AT 0.05 LEVEL OF SIGNIFICANCE. 

  SA SRD 

  Mean (Std Dev) Mean (Std Dev) 

&� 0.6968165 (0.1178876) 2.763E-08 (6.453E-09)* &� 35.375615 (33.543331) 0.1051867 (0.1060622)* &� 6924.7173 (1265.7867) 25.772213 (7.279176)* &� 104.29411 (19.064743) 102.62772 (18.440902) &� 2144.934 (289.38708) 875.06103 (69.284618)* &� 0.6414077 (0.0430748) 0.0046485 (0.0071604)* &� 2.346E-07 (7.023E-08) 9.558E-09 (1.591E-09)* &� 20.05514 (0.0120609) 19.510647 (0.1054413)* 

B. Experimental Series 2: High Dimension ( D=100) 

 The results of higher dimension (1 = 100) are shown in 

Table VIII. Similar to lower dimesion results the proposed 

method outperformed SA in terms of the quality of the 

result and covergence speed. However, similar to the 

previous experiments, the t-test did not pass for the test 

problem &�. Figures 2 to 4 show that as the problem 

dimension incresases, the gap between SA and  SRD also 

increases (interms candidate solution accuracy). Moreover, 

as compared to SA, the proposed method show significant 

improvement in the consistency of the solution found except 

for problem &� (i.e., the standard deviation was significantly 

lower than that of SA). 

VI. CONCLUSION 

This paper proposed the simulated raindrop (SRD) 

algorithm, a single-solution based optimization 

metaheuristic method. SRD optimization is inspired by 

raindrops travel from a higher altitude to a lower point on 

the landscape due to gravity. The performance of SRD was 

compared against the well-known single-solution based 

metaheuristic, Simulated Annealing (SA). Eight benchmark 

problems have been used for comparison purposes with 

dimensionalities of 30, 50, and 100. 

 

In all test problems the proposed method outperformed 

SA in terms of solution accuracy. The SRD was statistically 

better than SA on seven test problems out of eight.  Almost 

in all test problems, regardless of their dimensionality, SRD 

had better convergence speed and robustness. Moreover, as 

we increased the problem dimension from 1 = 30 to	1 =50, and 1 = 100, SRD better results compare to SA in 

terms of the consistency of the solution found.  

 

For future work, we would like to extend SRD to a 

population based metaheuristic and compare the 

performance against other population-based methods, such 

as GA, DE and PSO. 
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